
Database Management Systems (DBMS)

Data and Information

DATA: Facts concerning people, objects, vents or other entities.
Databases store data.

INFORMATION: Data presented in a form suitable for
interpretation.

Data is converted into information by programs and queries.
Data may be stored in files or in databases. Neither one stores
information.

KNOWLEDGE: Insights into appropriate actions based on
interpreted data.

3

Definitions

 Data: stored representations of meaningful objects and events or

 Referred to facts concerning objects and events that could be
recorded and stored on computer media

 Structured: numbers, text, dates

 Unstructured: images, video, documents

 Information: data processed to increase knowledge in the person
using the data

 Metadata: data that describes the properties and context of user
data

4

What is a Database

 Shared collection of logically related data (and a
description of this data), designed to meet the
information needs of an organization.

 System catalog (metadata) provides description of data
to enable program–data independence.

 Logically related data comprises entities, attributes, and

relationships of an organization’s information.

VERİTABANI NEDİR?

• Birbiri ile ilişkili veriler topluluğudur.

• Ya da, daha detaylı bir tanımla; veriyi yönetmek ve sunmak
için kullanılan tablolar, formlar, veri erişim sayfaları, sorgular
ve raporlardan oluşan nesneler topluluğudur.

• Veritabanı sadece veriler yığınını değil, bunlar arasındaki
ilişkiyi de inceler.

Basic Principles

DATABASE: A shared collection of interrelated data designed
to meet the varied information needs of an organization.

DATABASE MANAGEMENT SYSTEM: A collection of programs
to create and maintain a database.

Define

Construct

Manipulate

Database Management System Facility

• Data definition language (DDL)

• Data manipulation language (DML)

• Structured query language (SQL)

• Security system

• Integrity system

• Concurrency control system

• Backup & recovery system

• View mechanism

DBMS Environment
• Hardware

– Client-server architecture

• Software
– dbms, os, network, application

• Data
– Schema, subschema, table, attribute

• People
– Data administrator & database administrator
– Database designer: logical & physical
– Application programmer
– End-user: naive & sophisticated

• Procedure
– Start, stop, log on, log off, back up, recovery

VERİTABANININ FAYDALARI

• Veri tekrarları ortadan kaldırılır ya da en aza indirilir.

• Bellek alanı israfı önlenir.

• Standart bir sorgu dili kullanmak mümkündür.

• Veri bütünlüğünün bozulması önlenir.

Advantages of Database Processing

• More information from
same data

• Shared data

• Balancing conflicts
among users

• Controlled redundancy

• Consistency

• Integrity

• Security

• Increased productivity

• Data independence

Advantages of DBMS

• Control redundancy

• Consistency

• Integrity

• Security

• Concurrency control

• Backup & recovery

• Data standard

• More information

• Data sharing & conflict control

• Productivity & accessibility

• Economy of scale

• Maintenance

VERİTABANININ RİSKLERİ

• kurulum ve bakımı klasik dosya sisteminden
pahalıdır.

• sistem içinde bazı bileşenler iyi tasarlanmazsa
sistem bir bütün olarak başarısızlığa uprayabilir.

Disadvantages of Database Processing

• Increased size

• Increased complexity
– More expensive personnel

• Increased impact of failure

• Difficulty of recovery

• Cost
– Especially server and mainframe systems

Limitations of DBMS

• Complexity

• Size

• Cost

– Software

– Hardware

– Conversion

• Performance

• Vulnerability

15

The concept of a shared organizational database

Accounting

Accounts

Payable

Accounts

Receivable

Management

ControlPlanning

Manufacturing

ProductionScheduling

Marketing

Product

Development
Sales

Corporate

Database

Database Management System

 A software system that is used to create, maintain, and

provide controlled access to users of a database

 (Database) application program: A computer program that

interacts with database by issuing an appropriate request

(SQL statement) to the DBMS

Database Management System

DBMS manages data resources like an operating system manages hardware resources

VERİTABANI YÖNETİM SİSTEMİ NEDİR?
(DATABASE MANAGEMENT SYSTEM)

• Bir veri tabanı oluşturup üzerinde çeşitli işlemler
yapılmasını sağlayan programlar topluluğudur.

İLİŞKİSEL VERİ TABANI NEDİR?

• Veritabanı uygulamaları iki temel türe ayrılabilir.

– Düz-dosya veritabanları oluşturan lar

– İlişkisel (relatıonal) veritabanları oluşturanlar.

DÜZ-DOSYA VERİTABANI NEDİR?

• Bu tür programlarda tüm veritabanı tek bir tabloya
sığdırılmalıdır.

• Bu, birkaç kayıtta ortak olan herhangi bir bilginin her
kayıtta tekrarlanacağı anlamına gelir.

• Word ve excel bu tür programlara örnektir.

İLİŞKİSEL VERİTABANI NEDİR?

• Bu tür veri tabanında bir çok farklı tablo kullanılır ve tablolar
arasında ilişkiler oluşturulur.

• Bir ilişki, bir tabloya, başka bir başka bir tablodaki kaydı
bağlanmamızı sağlar.

• Bu şekilde veriler daha az yer kaplar ve güncelleme
kolaylaşır.

VERİTABANI BİLEŞENLERİ

• Tablolar

• Formlar

• Veri erişim sayfaları

• Sorgular

• Raporlar

BYTE

• 0-255 arası pozitif tamsayıları saklar.

• Bellekte 1 byte yer kaplar.

INTEGER (TAMSAYI)

• 2 byte’lık işaretli tamsayı tipidir.

• -32.768 ile 32.767 arasında bir değer alabilir.

LONG (UZUN TAMSAYI)

• 4 byte’lık işaretli tamsayı tipidir.

• -2.147.483.648 ile 2.147.483.647 arasında bir değer
alabilir.

SINGLE (TEK)

• 4 byte’lık ondalık sayı tipidir.

• (+/-)3.402823e38 ile (+/-)1.401298e-45 arasında
değer alabilir.

• Ondalık olarak en fazla 7 hane saklayabilir.

DOUBLE (ÇİFT)

• 8 byte’lık ondalık sayı tipidir.

• (+/-)1.79769313486232e308 ile (+/-
)4.94065645841247e-324 arasında değer alabilir.

• Ondalık olarak en fazla 7 hane saklayabilir.

CURRENCY

• 8 byte’lık ondalık sayı tipidir.

• Ancak sayının ondalık kısmı 4 basamaktan fazla
olamaz.

• Bu tip, daha çok para hesapları ve virgülden sonraki
hassasiyeti önemsiz olan işlemler için kullanılır.

DECIMAL (ONDALIK)

• 14 byte’lık veri tipidir.

• Bu tipin en önemli özelliği,sayıdaki bütün
basamakların tutulmasıdır.

• Bu veri türü 28 ondalik karakter saklayabilir.

INPUT MASK (MASKE)

• Verilerin belirli kurallara uymasını sağlayan
kısıtlamalardır.

• Örneğin bir alana sadece sayısal değerlerin girilmesi
zorlanabilir.

INPUT MASK (MASKE)

• Maskenin oluşturulmasında bazı özel işeretlerden
yararlanılır.

• ?:A-z arası alfabetik karakter.
• L: a-z arası alfabetik karakter.*
• #:0-9 arası rakam veya boşluk. + Ve – kullanılabilir.
• 0:0-9 arası rakam.+ Ve – girilmez.*
• 9: 0-9 arası rakam veya boşluk.

*Giriş zorunlu

SORGU NEDİR?

• Veritabanı sistemi içinde yer alan tablolardaki
verilerin isteğe uygun olarak seçilerek , belirli bir
düzen içinde sunulmasıdır.

FORMLAR

• Access veritabanı sisteminde uygulama geliştirirken,
yapılması gerekecek işlemlerden biri de kullanıcı
arayüzünün, yani formların oluşturulmasıdır.

• Formlar, program ile kullanıcı arasında bilgi iletişimini, yani
etkileşimi sağlayan ortamlardır.

FORM

• Her form bir veritabanı nesnesidir.

• Formların oluşturulması ve formlara girilen verilerin
veritabanına kaydedilmesi için uygun tanımların
yapılması gerekir.

ÖZELLİKLER PENCERESİ

• Araç çubuğunda “propertıes” butonuna tıklayarak
formla ilgili özellikleri belirleyebileceğimiz özellikler
penceresi açılır.

• Bu pencereden nesnenin her türlü özelliği
değiştirilebilir.

ÖZELLİKLER PENCERESİ

• Bu pencerede özellikler 5 gruba ayrılmıştır.

• Format:nesnelerin biçimlendirilmesi ile ilgili özellikleri
barındırır.

• Data:formun ilişkide olduğu verileri ve kaynağını belirler.

• Olay:nesnelere bağlı olayları tanımlar.

• Other:yukarıda sayılanların dışındaki özellikleri barındırır.

• All:tüm özellikler görülür.

OLAYLARIN KULLANIMI

• Nesneler üzerinde herhangi bir işlem yapıldığında
bir olay gerçekleşir.

• Örneğin bir düğmeye tıklanması bir olaydır.

• Metin kutusunun değiştirilmesi bir olaydır.

BİR NESNE İÇİN OLAYIN TANIMLANMASI

• nesne seçilir.

• özellikler penceresinde “event” tabına gelinir.

• ilgili olay seçilip “üç noktalı” butona tıklanır ve
“choose buılder” penceresi açılır.

• buradaki seçeneklerden biri ile olay tamamlanır.

BUILDER

• Bu pencereden ilgili olaya “ifade”, “makro” veya
“kod” yazılabilir.

BUILDER\EXPRESSION BUILDER

• Buradan bir takım komutların ve fonksiyonların
gerçekleşmesi sağlanır.

• Bunlar vısual basıc komut ve fonksiyonlarıdır.

BUILDER\MACRO BUILDER

• Bazı işlemleri otomatik hale getirmek için makrolar
kullanılır.

• Buılder’da macro buılder seçilir.

• Macro’ya isim verilir.

• Komutlar/fonksiyonlar ve özellikleri belirlenir.

42

Data Types & Data Structures

43

Data Types & Data Structures

• Applications/programs read data, store data temporarily, process it and finally output
results.

• What is data? Numbers, Voise, Picture, Video Characters, etc.

• Data is classified into data types. e.g. char, float, int, etc.

• A data type is (i) a domain of allowed values and (ii) a set of operations on these
values.

• Compiler signals an error if wrong operation is performed on data of a certain type.
For example, char x,y,z; z = x*y is not allowed.

Application/

Program
Data Data

44

Data Types & Data Structures

• Examples

Data Type Domain Operations

boolean 0,1 and, or, =, etc.

char ASCII =, <>, <, etc.

integer -maxint to +maxint +, _, =, ==, <>, <,

etc.

45

Data Types & Data Structures
• int i,j; i, j can take only integer values and only integer operations can be

carried out on i, j.

• Built-in types: defined within the language e.g. int,float, etc.

• User-defined types: defined and implemented by the user e.g. using typedef or
class.

46

Data Types & Data Structures

• Simple Data types: also known as atomic data types
 have no component parts. E.g. int, char, float,
etc.

21 3.14 ‘a’

47

Data Types & Data Structures

• Structured Data types: can be broken into
component parts. E.g. an object, array, set, file, etc.
Example: a student object.

A H M A D

20

C S C

Name

Age

Branch

A Component part

48

Data Types & Data Structures

• A data structure is a data type whose values (i) can
be decomposed into a set of component elements
each of which is either simple (atomic) or another
data structure (ii) include a structure involving the
component parts.

49

Data Types & Data Structure

Possible Structures: Set, Linear, Tree, Graph.

SET

LINEAR

TREE

GRAPH

50

Data Types & Data Structures

• What is the domain of a structured data type?
Operations?

• Example: boolean[] Sample[3];

000

001

010

011 100

101

110

111
Domain

1 0 0

51

Data Types & Data Structures

• Example: Operations:

Sample[0] = True;

C = Sample[1]; etc.
Elements

Structure

Domain Operations

Data Type/

Structure

52

Abstract Data Types (ADTs)

• Abstraction? Anything that hides details & provides
only the essentials.

• Examples: an integer 165 = 1.102+6.101+5.100,
procedures/subprograms, etc.

• Abstract Data Types (ADTs): Simple or structured
data types whose implementation details are
hidden…

53

ADTs

• While designing ADTs, a designer has to deal with
two types of questions:

– (i) What values are in the domain? What operations can
be performed on the values of a particular data type?

– (ii) How is the data type represented? How are the
operations implemented?

54

ADTs

• ADTs specification answers the ‘what’ questions. Specification is
written first.

• ADTs implementation answers the ‘how’ questions. Done after
specification.

• Users & Implementers.

• Users of an ADT need only know the specification …. no
implementation details. advantage

• Programmer (Implementer) who implements ADT is concerned
with..specification, representation, implementation.

55

ADTs

Elements Structure

OperationsDomain

Specification

Representation

Implementation

User of an ADT

must know

only this Implementer must

know all these.

56

ADT: Example

ADT String1

Specification:
Elements: type char.

Structure: elements (characters) are linearly arranged.

Domain: type String, finite domain, there are 0 to 80 chars in a string, therefore
1+128+1282+…..+12880 possible stings in the domain.

Operations: Assume that there is a string S.

1.Procedure Append (c: char)

Requires: length(S) < 80.

Results: c is appended to the right end of S.

57

ADT: Example

2. Procedure Remove (c: char)

Requires: length(S) > 0.

Results: The rightmost character of S is removed and placed in c, S’s length decreases by 1.

3. Procedure MakeEmpty ()

Results: all characters are removed.

4. Procedure Concatenate (R: String)

Results: String R is concatenated to the right of string S, result placed into S.

5. Procedure Reverse ()

6. Procedure Length (L: int)

7. Procedure Equal (S: String, flag: boolean)

8. Procedure GetChar (int i)

58

Note ..

• In Java the class construct is used to declare new
data types.

• In Java operations are implemented as function
members of classes or methods.

59

ADT String: Implementation
public class String1 extends Object {

private char[] str;
private int size;

public String1 () {
size = -1;
str = new char[80];

}
public void Append (char c) {

size++;
str[size] = c;

}

Implementation

Representation

60

ADT String: Implementation

public char Remove (){
char c = str[size];
size--;
return(c);

}
public char GetChar(int i){

return(str[i]);
}
public void MakeEmpty (){

size = -1;
}
public int Length (){

return(size); }

61

ADT String: Implementation

public void Concatenate (String1 s){

for (int i = 0; i<=s.Length(); i++) {

char c = s.GetChar(i);

Append(c);

}

}

public boolean Equal (String1 s){

}

public void Reverse () {

}

}

62

Using ADT String

import java.lang.*;

public class Test {

public static void main(String[] args) {

String1 s = new String1();

String1 s1 = new String1();

System.out.println("Hello, World");

s.Append('a');

s1.Append('b');

s.Concatenate(s1);

System.out.print(s.GetChar(0));

System.out.println(s.GetChar(1)); }

Data Structures

Data Structures

A data structure is a scheme for organizing data in the memory
of a computer.

Some of the more commonly used data structures include lists,
arrays, stacks, queues, heaps, trees, and graphs.

Data Structures

The way in which the data is organized affects the performance
of a program for different tasks.

Computer programmers decide which data structures to use
based on the nature of the data and the processes that need to
be performed on that data.

Example: A Queue
A queue is an example of commonly used simple data structure. A
queue has beginning and end, called the front and back of the queue.

Data enters the queue at one end and leaves at the other. Because of
this, data exits the queue in the same order in which it enters the queue,
like people in a checkout line at a supermarket.

Example: A Binary Tree

A binary tree is another commonly
used data structure. It is organized
like an upside down tree.

Each spot on the tree, called a node,
holds an item of data along with a
left pointer and a right pointer.

Binary Tree

Example: A Binary Tree

The pointers are lined up so that
the structure forms the upside
down tree, with a single node at
the top, called the root node, and
branches increasing on the left
and right as you go down the
tree.

Binary Tree

Choosing Data Structures -1

• By comparing the queue with the binary tree, you can see how the structure of the data
affects what can be done efficiently with the data.

• A queue is a good data structure to use for storing things that need to be kept in order,
such as a set of documents waiting to be printed on a network printer.

• The jobs will be printed in the order in which they are received.
• Most network print servers maintain such a print queue.
• A binary tree is a good data structure to use for searching sorted data.
• The middle item from the list is stored in the root node, with lesser items to the left and

greater items to the right.
• A search begins at the root. The computer either find the data, or moves left or right,

depending on the value for which you are searching.
• Each move down the tree cuts the remaining data in half.

Choosing Data Structures -2

• Items can be located very quickly in a tree.
• Telephone directory assistance information is stored in a tree, so that a name and phone

number can be found quickly.
• For some applications, a queue is the best data structure to use.
• For others, a binary tree is better.
• Programmers choose from among many data structures based on how the data will be

used by the program.

• An array is an indexed set of variables, such as dancer[1], dancer[2], dancer[3],… It is like a
set of boxes that hold things.

• A list is a set of items.
• An array is a set of variables that each store an item.

Data Structures
The any system has two built-in data structures that can be used to organize data, or
to create other data structures:

• Lists

• Arrays

•A list is an ordered set of data. It is often used to store objects that are to be
processed sequentially.

•A list can be used to create a queue.

Arrays and Lists

You can see the difference between arrays and lists when you delete items.

In a list, the missing spot is filled in when something is deleted.

In an array, an empty variable is left behind when something is deleted.

Lists

A list is created in any system by checking the make a list

box when creating a new variable.

The For all in order and For all together tiles can be used to

work with lists. They are at the bottom of the editor area.

Arrays

Arrays can be created in a similar manner, but more often

they are created using the array visualization object from

any system local gallery.

The Array Visualization object has special properties and

methods for manipulating the elements in an array.

Any system has a set of built-in functions that can be

performed on arrays.

Arrays

Data Structures : Algorithms

Data Structures : Algorithms

• Algorithm

– A high level, language independent description of a step-
by-step process for solving a problem

• Data Structure

– A set of algorithms which implement an ADT

Why so many data structures?
Ideal data structure:

fast, elegant, memory efficient

Generates tensions:
– time vs. space

– performance vs. elegance

– generality vs. simplicity

– one operation’s performance vs. another’s

Dictionary ADT

– list

– binary search tree

– AVL tree

– Splay tree

– Red-Black tree

– hash table

Code Implementation

• Theoretically
– abstract base class describes ADT

– inherited implementations implement data structures

– can change data structures transparently (to client code)

• Practice
– different implementations sometimes suggest different interfaces

(generality vs. simplicity)

– performance of a data structure may influence form of client code
(time vs. space, one operation vs. another)

ADT Presentation Algorithm

• Present an ADT
• Motivate with some applications
• Repeat until browned entirely through

– develop a data structure for the ADT
– analyze its properties

• efficiency
• correctness
• limitations
• ease of programming

• Contrast data structure’s strengths and weaknesses
– understand when to use each one

Queue ADT

• Queue operations
– create

– destroy

– enqueue

– dequeue

– is_empty

• Queue property: if x is enQed before y is enQed, then x will
be deQed before y is deQed

FIFO: First In First Out

F E D C Benqueue dequeueG A

Queue ADT

• You’ve probably seen the Queue before. If so, this is a review
and a way for us to get comfortable with the format of data
structure presentations in this class. If not, this is a simple but
very powerful data structure, and you should make sure you
understand it thoroughly.

• This is an ADT description of the queue. Notice that there are
no implementation details. Just a general description of the
interface and important properties of those interface
methods.

Applications of the Q

• Hold jobs for a printer

• Store packets on network routers

• Hold memory “freelists”

• Make waitlists fair

• Breadth first search

Circular Array Q Data Structure

void enqueue(Object x) {

Q[back] = x

back = (back + 1) % size

}

Object dequeue() {

x = Q[front]

front = (front + 1) % size

return x

}

b c d e f

Q
0 size - 1

front back

This is pseudocode. Do not correct my semicolons.

When is the Q empty?

Are there error situations this code will not
catch?

What are some limitations of this
structure?

Here is a data structure implementation of
the Q.

• The queue is stored as an array, and, to avoid shifting all the elements each
time an element is dequeued, we imagine that the array wraps around on
itself.

• This is an excellent example of how implementation can affect interface:
notice the “is_full” function.

• There’s also another problem here. What’s wrong with the Enqueue and
Dequeue functions?

• Your data structures should be robust! Make them robust before you even
consider thinking about making them efficient! That is an order!

Q Example

enqueue R

enqueue O

dequeue

enqueue T

enqueue A

enqueue T

dequeue

dequeue

enqueue E

dequeue

Linked List Q Data Structure

b c d e f

front back

void enqueue(Object x) {

if (is_empty())

front = back = new Node(x)

else

back->next = new Node(x)

back = back->next

}

Object dequeue() {

assert(!is_empty)

return_data = front->data

temp = front

front = front->next

delete temp

return temp->data

}

LIFO Stack ADT

• Stack operations
– create
– destroy
– push
– pop
– top
– is_empty

• Stack property: if x is on the stack before y is pushed, then x will
be popped after y is popped
LIFO: Last In First Out

A

B
C
D
E
F

E D C B A

F

Stacks in Practice

• Function call stack

• Removing recursion

• Balancing symbols (parentheses)

• Evaluating Reverse Polish Notation

• Depth first search

Array Stack Data Structure

S
0 size - 1
f e d c b

void push(Object x) {

assert(!is_full())

S[back] = x

back++

}

Object top() {

assert(!is_empty())

return S[back - 1]

}

back

Object pop() {

back--

return S[back]

}

bool is_full() {

return back == size

}

Linked List Stack Data Structure

b c d e f

back

void push(Object x) {

temp = back

back = new Node(x)

back->next = temp

}

Object top() {

assert(!is_empty())

return back->data

}

Object pop() {

assert(!is_empty())

return_data = back->data

temp = back

back = back->next

return return_data

}

Data structures you should already
know

• Arrays

• Linked lists

• Trees

• Queues

• Stacks

Database Applications
CS 15-415

Introduction
Lecture 1, January 7, 2018

Mohammad Hammoud

Data and Big Data
 The value of data as an organizational asset is widely recognized

 Data is literally exploding and is occurring along three main dimensions
• “Volume” or the amount of data
• “Velocity” or the speed of data
• “Variety” or the range of data types and sources

 What is Big Data?
 It is the proliferation of data that floods organizations on a daily basis

 It is high volume, high velocity, and/or high variety information assets

 It requires new forms of processing to enable fast mining, enhanced decision-making, insight
discovery and process optimization

What Do We Do With Data and Big Data?

Store

Query

Encrypt

We want to do these seamlessly and fast...

Share

Mine

…. and
more!

Why Studying Databases?
 Data is everywhere and is critical to our lives

 Data need to be recorded, maintained, accessed and manipulated correctly,
securely, efficiently and effectively
 At the “low end”: scramble to web-scale (a mess!)
 At the “high end”: scientific applications

 Database management systems (DBMSs) are indispensable software for achieving
such goals

 The principles and practices of DBMSs are now an integral part of computer
science curricula
 They encompass OS, languages, theory, AI, multimedia, and logic, among others

As such, the study of database systems can prove to be richly rewarding in more ways than
one!

List of Topics
.1.

The Entity-Relationship Model

.2.

The Relational Model

.3.

Relational Algebra and Calculus

.4.

SQL

.5.

Data Storage and Organization

.6.

Tree-Based and Hash-Based Indexing
.7.

Query Evaluation and Optimization

Considered: a reasonably critical and
comprehensive understanding.

Thoughtful: fluent, flexible and efficient
understanding.

Masterful: a powerful and illuminating
understanding.

.9.

Concurrency Control and Crash Recovery

.10.

Advanced Topics: Distributed Databases, Hadoop,
and NoSQL and NewSQL Databases

Data Base Management Systems

 A special software is accordingly needed to make the preceding tasks easier

 This software is known as Data Base Management System (DBMS)

 DBMSs provide automatic:
 Data independence

 Efficient data access

 Data integrity and security

 Data administration

 Concurrent access and crash recovery

 Reduced application development and tuning time

Some Definitions

 A database is a collection of data which describes one or many real-
world enterprises
 E.g., a university database might contain information about entities like students

and courses, and relationships like a student
enrollment in a course

 A DBMS is a software package designed to store and
manage databases
 E.g., DB2, Oracle, MS SQL Server, MySQL and Postgres

 A database system = (Big) Data + DBMS + Application Programs

Data Models

 The user of a DBMS is ultimately concerned with some real-world enterprises (e.g.,
a University)

 The data to be stored and managed by a DBMS describes various aspects of the
enterprises
 E.g., The data in a university database describes students, faculty and courses entities

and the relationships among them

 A data model is a collection of high-level data description constructs that hide
many low-level storage details

 A widely used data model called the entity-relationship (ER) model allows users to
pictorially denote entities and the relationships among them

The Relational Model
 The relational model of data is one of the most widely used

models today

 The central data description construct in the relational model
is the relation

 A relation is basically a table (or a set) with rows (or records or tuples) and
columns (or fields or attributes)

 Every relation has a schema, which describes the columns
of a relation

 Conditions that records in a relation must satisfy can be specified
 These are referred to as integrity constraints

People Who Work With Databases
 There are five classes of people associated with databases:

1. End users
 Store and use data in DBMSs
 Usually not computer professionals

2. Application programmers
 Develop applications that facilitate the usage of DBMSs for end-users
 Computer professionals who know how to leverage host languages, query languages and

DBMSs altogether

3. Database Administrators (DBAs)
 Design the conceptual and physical schemas
 Ensure security and authorization
 Ensure data availability and recovery from failures
 Perform database tuning

4. Implementers
 Build DBMS software for vendors like IBM and Oracle
 Computer professionals who know how to build DBMS internals

5. Researchers
 Innovate new ideas which address evolving and new challenges/problems

Features of Database Management
System

Database Management System

Database: A collection of related data. It should support

– Definition

– Construction

– Manipulation

Database Management System: A collection of programs that
enable the users to create and maintain a database.

Features of DBMS
1. Data storage, retrieval, and update: The ability to store, retrieve, and update

the data that are in the database.

2. User-accessible catalog: where descriptions of database components are
stored and are accessible to the users

3. Shared update support: A mechanism to ensure accuracy when several users
are updating the database at the same time

4. Backup and Recovery Services: Mechanisms for recovering the database in
the event that a database is damaged somehow.

5. Security Services: Mechanisms to ensure that certain rules are followed with
regard to data in the database and any changes that are made in the data

Features of DBMS

5. Integrity services: Mechanisms to ensure that certain rules are
followed with regard to data in the database and any changes that are
made in the data.

6. Data Independence: Facilities to support the independence of
programs from the structure of the database.

7. Replication support: A facility to manage copies of the same data at
multiple locations.

8. Utility Services: DBMS provided services that assist in the general
maintenance of the database.

Shared Updates

• Multiple users are making updates to the database at the same
time.

Problem:

– Multiple people updating the database simultaneously can override each other

Example:

– Agents T1 & T2 simultaneously read the seats reserved on Flight 890 i.e. 80

– T1 cancels 5 seats updating the seats reserved on Flight 890 to 75

– T2 reserves 4 additional seats on the flight and updates the seats reserved on Flight
890 to 84.

– If T1 updates the database before T2. T2 will override T1’s change and make
reservations to 84 rather than getting the correct value of 79.

– Similarly if T2 updates before T1 the seats reserved will be 75

Shared Updates: Solution

• Batch Processing

– Allow multiple users to retrieve data simultaneously

– Updates are added to a batch file which does the appropriate
processing

– Does not work for real time situations

• Locking

– Restrict access to the record being updated by a user till the
transaction is complete.

Two Phase Lock

• Required when multiple records are updated as a result of a
user action (e.g. filling form etc.)

• All the records accessed are locked progressively till the
required updates are completed

– Growing Phase: More and more locks are added without releasing
locks

– After all locks are placed the database is updated

– Shrinking Phase: All locks are removed and no new ones are added

Deadlock

• When two transactions require a common set of
records.

• Both of them are in growing phase and each locks
some of the records

• None of the records are released and they wait for
each other to release the locked records

They will wait forever!!!

Breaking Deadlock

Facilities
• Programs can lock entire tables or an individual row
• Programs can release any or all of the locks they currently hold
• Programs can inquire whether a given row or table is locked

Rules
• If more than one row is required then the entire table must be locked
• Limit the amount of wait for a lock to be released beyond which a

transaction is aborted
• A well designed transaction should lock all the rows and tables before

starting the transaction
• Users should release locks as soon as possible to improve the

efficiency of the database

Security

• Protection against unauthorized access: either
intentional or accidental.

• Three main features for protection
– Passwords: Allows only authorized users to access the

database. Access privileges can be provided based on access
needs

– Encryption: Encodes data to non-decipherable. Data
decoded on demand to prevent hackers from accessing data

– Views: Different snapshot of the data ensures that users only
get access to data they need

Integrity

• Integrity Constraints are the conditions that data must
satisfy during initial input & updates.

• There are four categories of constraints
– Data Type
– Legal Values
– Format
– Key Constraints

• Entity Integrity Constraints (Primary Key)
– Enforces the uniqueness of the primary key

• Referential Integrity Constraints (Foreign Key)
– Value of foreign key must match the value of primary key for some row in

another table

Integrity: Solutions

• Ignore constraint
– Undesirable as it can lead to inconsistent data

• Let user enforce the constraint
– Undesirable since user mistakes can be disastrous

• Let programmer build the logic of constraints in the
programs
– Makes programs complex: harder to write, harder to

maintain, and expensive

• Place burden on the DBMS.
– Preferred way: Cost of DBMS development amortized over

large user base, hence economical

Replication

• Duplication of data at multiple physical locations

• Each replica of the data can be changed
independently

• Periodically the replicas update their data to the
master database – this process is called
synchronization

Disaster Planning: Backup & Recovery

• Database can be damaged in a number of ways

– Power outage, disk crashes, floods, user errors

• Periodic backups limit the loss due to sudden failures

• Data can be recovered from the latest backup and the
changes since the backup need to be done in either of
two ways

– Manually

– From a catalog (if exists) recording all updates to the
database since the last backup.

Catalog/Data Dictionary

• Contains information describing the database
– Schema for the database

– Characteristic for each field

– Possible values for each field

– Description of the data

– Relationships

– Description of the programs

• Data Dictionary is same as catalog but may contain
wider set of information than catalog

