Database Management Systems (DBMS)

Data and Information

DATA: Facts concerning people, objects, vents or other entities.
Databases store data.

INFORMATION: Data presented in a form suitable for
Interpretation.

Data is converted into information by programs and queries.
Data may be stored in files or in databases. Neither one stores
information.

KNOWLEDGE: /nsights into appropriate actions based on
interpreted data.

Definitions

Data: stored representations of meaningful objects and events or

Referred to facts concerning objects and events that could be
recorded and stored on computer media

Structured: numbers, text, dates
Unstructured: images, video, documents

Information: data processed to increase knowledge In the person
using the data

Metadata: data that describes the properties and context of user
data

What i1s a Database

Shared collection of logically related data (and a
description of this data), designed to meet the
Information needs of an organization.

System catalog (metadata) provides description of data
to enable program—data independence.

Logically related data comprises entities, attributes, and
relationships of an organization’s information.

VERITABANI NEDIR?

* Birbiri ile iliskili veriler toplulugudur.

* Ya da, daha detayli bir tanimla; veriyi yonetmek ve sunmak
icin kullanilan tablolar, formlar, veri erisim sayfalari, sorgular
ve raporlardan olusan nesneler toplulugudur.

* Veritabani sadece veriler yiginini degil, bunlar arasindaki
iliskiyi de inceler.

Basic Principles

DATABASE: A shared collection of interrelated data designed
to meet the varied information needs of an organization.

DATABASE MANAGEMENT SYSTEM: A collection of programs
to create and maintain a database.

Define
Construct
Manipulate

Database Management System Facility

Data definition language (DDL)
Data manipulation language (DML)
Structured query language (SQL)
Security system

Integrity system

Concurrency control system
Backup & recovery system

View mechanism

DBMS Environment

Hardware
— Client-server architecture
Software
— dbms, os, network, application
Data
— Schema, subschema, table, attribute
People
— Data administrator & database administrator
— Database designer: logical & physical
— Application programmer
— End-user: naive & sophisticated
Procedure
— Start, stop, log on, log off, back up, recovery

VERITABANININ FAYDALARI

Veri tekrarlari ortadan kaldirilir ya da en aza indirilir.
Bellek alani israfi onlenir.

Standart bir sorgu dili kullanmak mumkundur.

Veri butunlugunun bozulmasi onlenir.

Advantages of Database Processing

More information from
same data

Shared data

Balancing conflicts
among users

Controlled redundancy
Consistency

Integrity

Security

Increased productivity
Data independence

Advantages of DBMS

Control redundancy
Consistency

Integrity

Security

Concurrency control
Backup & recovery

Data standard

More information

Data sharing & conflict control
Productivity & accessibility
Economy of scale
Maintenance

VERITABANININ RISKLERI

e kurulum ve bakimi klasik dosya sisteminden
pahalidir.

* sistem icinde bazi bilesenler iyi tasarlanmazsa
sistem bir butun olarak basarisizliga uprayabilir.

Disadvantages of Database Processing

Increased size

Increased complexity
— More expensive personnel

Increased impact of failure
Difficulty of recovery

Cost
— Especially server and mainframe systems

Complexity
Size
Cost
— Software
— Hardware
— Conversion
Performance
Vulnerability

Limitations of DBMS

The concept of a shared organizational database

[
pensn
G o

/ Database | "
oomivg |

Database Management System

A software system that Is used to create, maintain, and
provide controlled access to users of a database

(Database) application program: A computer program that

Interacts with database by issuing an appropriate request
(SQL statement) to the DBMS

Database Management System

If'igurt': 1-3 IDatabasc approsach art B

irre Waoallesw Furmitu

: Ferscamre|
Sﬁ' Cremartment

(:“_ T T,
. R
—
Metadata)
| L Customears
Employees
Products
Crrdders
H_h_____ I

DBMS manages data resources like an operating system manages hardware resources

VERITABANI YONETIM SISTEMI NEDIR?
(DATABASE MANAGEMENT SYSTEM)

* Bir veri tabani olusturup uzerinde cesitli islemler
vapilmasini saglayan programlar toplulugudur.

ILISKISEL VERI TABANI NEDIR?

* Veritabani uygulamalari iki temel tire ayrilabilir.
— Duz-dosya veritabanlari olusturan lar

— lliskisel (relational) veritabanlari olusturanlar.

DUZ-DOSYA VERITABANI NEDIR?

 Bu tur programlarda tum veritabani tek bir tabloya
sigdirilmalidir.

* Bu, birkac kayitta ortak olan herhangi bir bilginin her
kayitta tekrarlanacagi anlamina gelir.

* Word ve excel bu tur programlara ornektir.

ILISKISEL VERITABANI NEDIR?

* Bu tur veri tabaninda bir cok farkli tablo kullanilir ve tablolar
arasinda iliskiler olusturulur.

* Biriliski, bir tabloya, baska bir baska bir tablodaki kaydi
baglanmamizi saglar.

* Bu sekilde veriler daha az yer kaplar ve gtincelleme
kolaylasir.

VERITABANI BILESENLERI

e Tablolar
e Formlar

* Veri erisim sayfalari
e Sorgular
* Raporlar

BYTE

* 0-255 arasi pozitif tamsayilari saklar.
* Bellekte 1 byte yer kaplar.

INTEGER (TAMSAY])

e 2 byte’lik isaretli tamsay! tipidir.
 -32.768 ile 32.767 arasinda bir deger alabilir.

LONG (UZUN TAMSAYI)

e 4 byte’lik isaretli tamsayi tipidir.

e -2.147.483.648 ile 2.147.483.647 arasinda bir deger
alabilir.

SINGLE (TEK)

* 4 byte’lik ondalik sayi tipidir.

e (+/-)3.402823e38 ile (+/-)1.401298e-45 arasinda
deger alabilir.

* Ondalik olarak en fazla 7 hane saklayabilir.

DOUBLE (CIFT)

* 8 byte’lik ondalik sayi tipidir.

* (+/-)1.79769313486232e308 ile (+/-
)4.94065645841247e-324 arasinda deger alabilir.

* Ondalik olarak en fazla 7 hane saklayabilir.

CURRENCY

* 8 byte’lik ondalik sayi tipidir.

* Ancak sayinin ondalik kismi 4 basamaktan fazla
olamaz.

* Bu tip, daha cok para hesaplari ve virgtulden sonraki
hassasiyeti onemsiz olan islemler icin kullanilir.

DECIMAL (ONDALIK)

e 14 byte’lik veri tipidir.

* Bu tipin en onemli o6zelligi,sayidaki butun
basamaklarin tutulmasidir.

* Bu veri turu 28 ondalik karakter saklayabilir.

INPUT MASK (MASKE)

* Verilerin belirli kurallara uymasini saglayan
kisitlamalardir.

* Ornegin bir alana sadece sayisal degerlerin girilmesi
zorlanabilir.

INPUT MASK (MASKE)

Maskenin olusturulmasinda bazi 6zel iseretlerden
vararlanilir.

?:A-z arasl alfabetik karakter.
L: a-z arasi alfabetik karakter.®
#:0-9 arasi rakam veya bosluk. + Ve — kullanilabilir.
0:0-9 arasi rakam.+ Ve — girilmez.*
9: 0-9 arasi rakam veya bosluk.
*@Giris zorunlu

SORGU NEDIR?

* Veritabani sistemi icinde yer alan tablolardaki
verilerin istege uygun olarak secilerek , belirli bir
duzen icinde sunulmasidir.

FORMLAR

* Access veritabani sisteminde uygulama gelistirirken,
vapilmasi gerekecek islemlerden biri de kullanici
arayuzunun, yani formlarin olusturulmasidir.

* Formlar, program ile kullanici arasinda bilgi iletisimini, yani
etkilesimi saglayan ortamlardir.

FORM

e Her form bir veritabani nesnesidir.

* Formlarin olusturulmasi ve formlara girilen verilerin
veritabanina kaydedilmesi icin uygun tanimlarin
vapilmasi gerekir.

OZELLIKLER PENCERESI

* Arac cubugunda “properties” butonuna tiklayarak
formla ilgili 6zellikleri belirleyebilecegimiz 6zellikler
penceresi acllir.

* Bu pencereden nesnenin her turlt ozelligi
degistirilebilir.

OZELLIKLER PENCERESI

Bu pencerede ozellikler 5 gruba ayrilmistir.

Format:nesnelerin bicimlendirilmesi ile ilgili 6zellikleri
barindirir.

Data:formun iliskide oldugu verileri ve kaynagini belirler.
Olay:nesnelere bagli olaylari tanimlar.

Other:yukarida sayilanlarin disindaki 6zellikleri barindirir.
All:tim ozellikler gorualar.

OLAYLARIN KULLANIMI

* Nesneler Uzerinde herhangi bir islem yapildiginda
bir olay gerceklesir.

* Ornegin bir dugmeye tiklanmasi bir olaydir.
* Metin kutusunun degistirilmesi bir olaydir.

BIR NESNE ICIN OLAYIN TANIMLANMASI

nesne secilir.
Ozellikler penceresinde “event” tabina gelinir.

l1gili olay secilip “U¢ noktali” butona tiklanir ve
“choose builder” penceresi acllir.

buradaki seceneklerden biri ile olay tamamlanur.

BUILDER

* Bu pencereden ilgili olaya “ifade”, “makro” veya
“kod” yazilabilir.

BUILDER\EXPRESSION BUILDER

* Buradan bir takim komutlarin ve fonksiyonlarin
gerceklesmesi saglantr.

* Bunlar visual basic komut ve fonksiyonlaridir.

BUILDER\MACRO BUILDER

Bazi islemleri otomatik hale getirmek icin makrolar
kullantlir.

Builder’da macro builder secilir.
Macro’ya isim verilir.
Komutlar/fonksiyonlar ve 6zellikleri belirlenir.

Data Types & Data Structures

42

Data Types & Data Structures

Applications/programs read data, store data temporarily, process it and finally output

results.

What is data? Numbers, Voise, Picture, Video Characters, etc.

Data is classified into data types. e.g. char, float, int, etc.

A data type is (i) a domain of allowed values and (ii) a set of operations on these

values.

Compiler signals an error if wrong operation is performed on data of a certain type.

For example, char x,y,z; z = x*y is not allowed.

Data Application/
Program

DMa>

43

Data Types & Data Structures

 Examples
Data Type Domain Operations
boolean 0,1 and, or, =, etc.
char ASCII =, <>, <, etc.
Integer -maxint to +maxint | +, |, = ==, <>, <,
etc.

44

Data Types & Data Structures

int 1, j;=2 i, j can take only integer values and only integer operations can be
carried outon i, j.

Built-in types: defined within the language e.g. int, float, etc.

User-defined types: defined and implemented by the user e.g. using typedef or
class.

45

Data Types & Data Structures

* Simple Data types: also known as atomic data types

- have no component parts. E.g. int, char, float,
etc.

21

3.14

46

Data Types & Data Structures

* Structured Data types: can be broken into
component parts. E.g. an object, array, set, file, etc.
Example: a student object.

M A D

Name | A H
Age {20 D
S

Branch | € \

C

N A Component part

Data Types & Data Structures

* A data structure is a data type whose values (i) can
be decomposed into a set of component elements
each of which is either simple (atomic) or another
data structure (ii) include a structure involving the
component parts.

48

Data Types & Data Structure

Possible Structures: Set, Linear, Tree, Graph.

e © LINEAR

/ TREE /&
‘/‘\‘ GRAPH >

49

Data Types & Data Structures

 What is the domain of a structured data type?
Operations?

e Example: boolean|] Sample[3];

000 011 100
001 101 111
010 110

Domain

50

Data Types & Data Structures

 Example: Operations:

Sample |0

C = Sampl

True:
ell]:

etc.

Elements
' Structure
Domain Operations

Data Type/

ol

Abstract Data Types (ADTs)

* Abstraction? Anything that hides details & provides
only the essentials.

 Examples: an integer 165 = 1.102+6.101+5.10°,
procedures/subprograms, etc.

* Abstract Data Types (ADTs): Simple or structured

data types whose implementation details are
hidden...

52

ADTs

* While desighing ADTs, a desigher has to deal with
two types of questions:

— (i) What values are in the domain? What operations can
be performed on the values of a particular data type?

— (ii) How is the data type represented? How are the
operations implemented?

53

ADTs

ADTs specification answers the ‘what’ questions. Specification is
written first.

ADTs implementation answers the ‘how’ questions. Done after
specification.

Users & Implementers.

Users of an ADT need only know the specification no
implementation details. < advantage

Programmer (Implementer) who implements ADT is concerned
with..specification, representation, implementation.

o4

User of an ADT

must know
only this

ADTs

Elements

Structure

Domain Operations

e

Specification

Representation

Implementation

Implementer must
> know all these.

95

ADT: Example

ADT Stringl
Specification:

Elements: type char.

Structure: elements (characters) are linearly arranged.

Domain: type String, finite domain, there are 0 to 80 chars in a string, therefore
1+128+128%+.....4128%° possible stings in the domain.

Operations: Assume that there is a string S.
1.Procedure Append (c: char)

Requires: length(S) < 80.

Results: c is appended to the right end of S.

56

0O NN O U

ADT: Example

. Procedure Remove (c: char)

Requires: length(S) > 0.

Results: The rightmost character of S is removed and placed in ¢, S’s length decreases by 1.

. Procedure MakeEmpty ()

Results: all characters are removed.

. Procedure Concatenate (R: String)

Results: String R is concatenated to the right of string S, result placed into S.

. Procedure Reverse ()

. Procedure Length (L: int)

. Procedure Equal (S: String, flag: boolean)

. Procedure GetChar (int i)

¥

Note ..

 |In Java the class construct is used to declare new
data types.

* |n Java operations are implemented as function
members of classes or methods.

58

ADT String: Implementation

public class Stringl extends Object {
private char|] str;

public Stringl () {
size = —1:
str = new char|[80]:

}
public void Append (char c) { -
sizetT;

str|sizel] = c:

59

ADT String: Implementation

public char Remove () {
char ¢ = strlsize];
size——;
return(c) ;

J
public char GetChar (int i) {

return(strli]) :

J
public void MakeEmpty () {

size = —1;

}
public int Length () {

return(size): }

60

ADT String: Implementation

public void Concatenate (Stringl s) {
for (int i = 0; i<{=s.Length(); i++) {
char ¢ = s.GetChar (i) ;
Append (c) ;
J
}
public boolean Equal (Stringl s){

)

public void Reverse () {

)

61

Using ADT String

import java. lang. *;
public class Test {
public static void main(Stringl] args) {

Stringl s = new Stringl();
Stringl sl = new Stringl () ;
System. out. println(“Hello, World”);
s. Append(C a’) ;
s1. Append(C b’) :
s. Concatenate(sl) :
System. out. print (s. GetChar (0)) :
System. out. println(s. GetChar (1)) ; }

62

Data Structures

Data Structures

A data structure is a scheme for organizing data in the memory
of a computer.

Some of the more commonly used data structures include lists,
arrays, stacks, queues, heaps, trees, and graphs.

Data Structures

The way in which the data is organized affects the performance
of a program for different tasks.

Computer programmers decide which data structures to use

based on the nature of the data and the processes that need to
be performed on that data.

Example: A Queue

A queue is an example of commonly used simple data structure. A
queue has beginning and end, called the front and back of the queue.

L
o

Data enters the queue at one end and leaves at the other. Because of
this, data exits the queue in the same order in which it enters the queue,
like people in a checkout line at a supermarket.

Example: A Binary Tree

A binary tree is another commonly
used data structure. It is organized
like an upside down tree.

Each spot on the tree, called a node,
holds an item of data along with a
left pointer and a right pointer.

Binary Tree

Example: A Binary Tree

The pointers are lined up so that
the structure forms the upside
down tree, with a single node at
the top, called the root node, and
branches increasing on the left

and right as you go down the
tree.

Binary Tree

Choosing Data Structures -1

By comparing the queue with the binary tree, you can see how the structure of the data
affects what can be done efficiently with the data.

A queue is a good data structure to use for storing things that need to be kept in order,
such as a set of documents waiting to be printed on a network printer.

The jobs will be printed in the order in which they are received.

Most network print servers maintain such a print queue.

A binary tree is a good data structure to use for searching sorted data.

The middle item from the list is stored in the root node, with lesser items to the left and
greater items to the right.

A search begins at the root. The computer either find the data, or moves left or right,
depending on the value for which you are searching.

Each move down the tree cuts the remaining data in half.

Choosing Data Structures -2

ltems can be located very quickly in a tree.

Telephone directory assistance information is stored in a tree, so that a name and phone
number can be found quickly.

For some applications, a queue is the best data structure to use.

For others, a binary tree is better.

Programmers choose from among many data structures based on how the data will be
used by the program.

An array is an indexed set of variables, such as dancer[1], dancer[2], dancer[3],... Itis like a
set of boxes that hold things.

A list is a set of items.

An array is a set of variables that each store an item.

Data Structures

The any system has two built-in data structures that can be used to organize data, or
to create other data structures:

® Lists
® Arrays

® A list is an ordered set of data. It is often used to store objects that are to be
processed sequentially.

® A list can be used to create a queue.

Arrays and Lists

You can see the difference between arrays and lists when you delete items.
In a list, the missing spot is filled in when something is deleted.
In an array, an empty variable is left behind when something is deleted.

Before Deletion After Deletion

List

Array

Lists

A list is created in any system by checking the make a list

box when creating a new variable.

The For all in order and For all together tiles can be used to
work with lists. They are at the bottom cf the editor area,

Arrays

Arrays can be created in a similar manner, but more often
they are created using the array visualization object from
any system local gallery.

The Array Visualization object has special properties and
methods for manipulating the elements in an array.

Any system has a set of built-in functions that can be
performed on arrays.

Arrays

(&) ArrayVisualization

Arrayvisualization

size: 82 kb
parts: 3

dei instance to world[m

Data Structures : Algorithms

Data Structures : Algorithms

* Algorithm

— A high level, language independent description of a step-
by-step process for solving a problem

e Data Structure

— A set of algorithms which implement an ADT

Why so many data structures?

|deal data structure: Dictionary ADT
fast, elegant, memory efficient

— list
. — binary search tree
Generates tensions:
— time vs. space — AVl tree
— performance vs. elegance — Splay tree
— generality vs. simplicity — Red-Black tree

— one operation’s performance vs. another’s

— hash table

Code Implementation

 Theoretically
— abstract base class describes ADT
— inherited implementations implement data structures
— can change data structures transparently (to client code)

* Practice

— different implementations sometimes suggest different interfaces
(generality vs. simplicity)

— performance of a data structure may influence form of client code
(time vs. space, one operation vs. another)

ADT Presentation Algorithm

Present an ADT
Motivate with some applications

Repeat until browned entirely through
— develop a data structure for the ADT

— analyze its properties
e efficiency
e correctness
* limitations
e ease of programming

Contrast data structure’s strengths and weaknesses
— understand when to use each one

Queue ADT

* Queue operations
— Create
— destroy
— enqueue G enqueue ., FEDCB dequeue .| A
— dequeue
— IS_empty
* Queue property: if x is enQed before y is enQed, then x will
be deQed before y is deQed

FIFO: First In First Out

Queue ADT

* You’'ve probably seen the Queue before. If so, this is a review
and a way for us to get comfortable with the format of data
structure presentations in this class. If not, this is a simple but

very powerful data structure, and you should make sure you
understand it thoroughly.

* This is an ADT description of the queue. Notice that there are
no implementation details. Just a general description of the

interface and important properties of those interface
methods.

Applications of the Q

Hold jobs for a printer

Store packets on network routers
Hold memory “freelists”

Make waitlists fair

Breadth first search

Circular Array Q Data Structure

Q .
0 size -1
blc|d|e]| f
front back

void enqueue (Object x) { When is the Q empty?

Q[back] = x

back = (back + 1) % size Are there error situations this code will not
) . catch?
Object dequeue () {

X = Q[front] What are some limitations of this

front = (front + 1) % size

structure?
return x

This is pseudocode. Do not correct my semicolons.

Here is a data structure implementation of
the Q.

The queue is stored as an array, and, to avoid shifting all the elements each

time an element is dequeued, we imagine that the array wraps around on
itself.

This is an excellent example of how implementation can affect interface:
notice the “is_full” function.

There’s also another problem here. What’s wrong with the Enqueue and
Dequeue functions?

Your data structures should be robust! Make them robust before you even
consider thinking about making them efficient! That is an order!

enc
enc
dec
enc
enc
enc
dec
dec
enc
dec

ueue R
ueue O
ueue
ueue T
ueue A
ueue T
ueue
ueue
ueue E
ueue

Q Example

Linked List Q Data Structure

b » C > d

T

front

void enqueue (Object x) {
if (is _empty())
front = back = new Node (x)
else
back->next = new Node (x)
back = back->next

» e >f
/

back

Object dequeue() {
assert(!'is empty)
return data = front->data
temp = front
front = front->next
delete temp

return temp->data

LIFO Stack ADT

e Stack operations
— Create

A EDCBA
— destroy \ ﬁ

— push

— POp

— top

— IS_empty
e Stack property: if x is on the stack-before vy is

be popped after vy is popped

LIFO: Last In First Out

MM QOO ®

U;-n
B

d, then x will

C

Stacks in Practice

Function call stack

Removing recursion

Balancing symbols (parentheses)
Evaluating Reverse Polish Notation
Depth first search

Array Stack Data Structure

S
0 size -1
fle|d|c|b
T
back
void push (Object x) { Obdject O
assert(!'is full())] pop ()
S[back] = x back--
back++ return S[back]
}
Object top() { }

assert('is_empty())

return S[back - 1] bool is full() {

return back == size

}

Linked List Stack Data Structure

b ¥ C > d > e > f
T
back
void push (Object x) ({ Object pop () {
temp = back assert(!is _empty())
back = new Node (x) return data = back->data
back->next = temp temp = back
} back = back->next
Object top () { return return data
assert(!is _empty()) }

return back->data

Data structures you should already

Arrays
Linked lists
Trees
Queues
Stacks

know

Database Applications
CS 15-415

Introduction
Lecture 1, January 7, 2018

Mohammad Hammoud

,J=_‘-3\£ +Lu=3\ :i,

= a2 a N

e Mellon Un

Data and Big Data

" The value of data as an organizational asset is widely recognized

"= Datais literally exploding and is occurring along three main dimensions
* “Volume” or the amount of data
* “Velocity” or the speed of data
* “Variety” or the range of data types and sources

= Whatis Big Data?
" |tis the proliferation of data that floods organizations on a daily basis

= |tis high volume, high velocity, and/or high variety information assets

" |t requires new forms of processing to enable fast mining, enhanced decision-making, insight
discovery and process optimization

What Do We Do With Data and Big Data?

.... and
more!

Encrypt

We want to do these seamlessly and fast...

Why Studying Databases?

= Data is everywhere and is critical to our lives

= Data need to be recorded, maintained, accessed and manipulated correctly,

securely, efficiently and effectively
= At the “low end”: scramble to web-scale (a mess!)

= At the “high end”: scientific applications

= Database management systems (DBMSs) are indispensable software for achieving
such goals

= The principles and practices of DBMSs are now an integral part of computer

science curricula
= They encompass OS, languages, theory, Al, multimedia, and logic, among others

As such, the study of database systems can prove to be richly rewarding in more ways than

ohe!

List of Topics

Considered: a reasonably critical and \
comprehensive understanding.
N)
Thoughtful: fluent, flexible and efficient : : :
s, The Entlty-ReIaZtlonshlp Model J
@)asterful: - powerful and illuminating The Relational Model)
K understanding. j -3. R

Relational Algebra and Calculus

7. 3
sqQL)
. 0

Data Storage and Organization
.0.)

Tree-Based and Hash-Based Indexing
7.

J \\

Query Evaluation and Optimization

s N
L] L]

Concurrency Control and Crash Recovery

.10. b

M| Advanced Topics: Distributed Databases, Hadoop,
and NoSQL and NewSQL Databases

J

Data Base Management Systems

= A special software is accordingly needed to make the preceding tasks easier
= This software is known as Data Base Management System (DBMS)

= DBMSs provide automatic:
= Dataindependence
= Efficient data access
= Data integrity and security
= Data administration
= Concurrent access and crash recovery
= Reduced application development and tuning time

;,..Jr;ﬂﬁﬂ N4 , s‘;.JL.J,_ﬁji \ - T -;L = n_2 a ﬂ._\.‘

5

Carnegie Mellon University Qatar

Some Definitions

" A database is a collection of data which describes one or many real-
world enterprises

" E.g., auniversity database might contain information about entities like students
and courses, and relationships like a student
enrollment in a course

= ADBMS is a software package designhed to store and
manage databases

= E.g., DB2, Oracle, MS SQL Server, MySQL and Postgres

" A database system = (Big) Data + DBMS + Application Programs

Data Models

The user of a DBMS is ultimately concerned with some real-world enterprises (e.g.,
a University)

The data to be stored and managed by a DBMS describes various aspects of the
enterprises

= E.g., The data in a university database describes students, faculty and courses entities
and the relationships among them

A data model is a collection of high-level data description constructs that hide
many low-level storage details

A widely used data model called the entity-relationship (ER) model allows users to
pictorially denote entities and the relationships among them

The Relational Model

The relational model of data is one of the most widely used
models today

The central data description construct in the relational model
is the relation

A relation is basically a table (or a set) with rows (or records or tuples) and
columns (or fields or attributes)

Every relation has a schema, which describes the columns
of a relation

Conditions that records in a relation must satisfy can be specified
" These are referred to as integrity constraints

People Who Work With Databases

" There are five classes of people associated with databases:

1. End users
= Store and use data in DBMSs
= Usually not computer professionals
2. Application programmers
= Develop applications that facilitate the usage of DBMSs for end-users

= Computer professionals who know how to leverage host languages, query languages and
DBMSs altogether

3. Database Administrators (DBAs)
= Design the conceptual and physical schemas
" Ensure security and authorization
= Ensure data availability and recovery from failures
= Perform database tuning
4. Implementers
* Build DBMS software for vendors like IBM and Oracle
= Computer professionals who know how to build DBMS internals
5. Researchers
* |nnovate new ideas which address evolving and new challenges/problems

Features of Database Management
System

Database Management System

Database: A collection of related data. It should support
— Definition
— Construction
— Manipulation

Database Management System: A collection of programs that
enable the users to create and maintain a database.

Features of DBMS

Data storage, retrieval, and update: The ability to store, retrieve, and update
the data that are in the database.

User-accessible catalog: where descriptions of database components are
stored and are accessible to the users

Shared update support: A mechanism to ensure accuracy when several users
are updating the database at the same time

Backup and Recovery Services: Mechanisms for recovering the database in
the event that a database is damaged somehow.

Security Services: Mechanisms to ensure that certain rules are followed with
regard to data in the database and any changes that are made in the data

Features of DBMS

Integrity services: Mechanisms to ensure that certain rules are
followed with regard to data in the database and any changes that are
made in the data.

Data Independence: Facilities to support the independence of
programs from the structure of the database.

Replication support: A facility to manage copies of the same data at
multiple locations.

Utility Services: DBMS provided services that assist in the general
maintenance of the database.

Shared Updates

* Multiple users are making updates to the database at the same
time.

Problem:

Multiple people updating the database simultaneously can override each other

Example:

Agents T1 & T2 simultaneously read the seats reserved on Flight 890 i.e. 80
T1 cancels 5 seats updating the seats reserved on Flight 890 to 75

T2 reserves 4 additional seats on the flight and updates the seats reserved on Flight
890 to 84.

If T1 updates the database before T2. T2 will override T1’s change and make
reservations to 84 rather than getting the correct value of 79.

Similarly if T2 updates before T1 the seats reserved will be 75

Shared Updates: Solution

 Batch Processing

— Allow multiple users to retrieve data simultaneously

— Updates are added to a batch file which does the appropriate
orocessing

— Does not work for real time situations
* Locking

— Restrict access to the record being updated by a user till the
transaction is complete.

Two Phase Lock

 Required when multiple records are updated as a result of a
user action (e.g. filling form etc.)

 Allthe records accessed are locked progressively till the
required updates are completed

— Growing Phase: More and more locks are added without releasing
locks

— After all locks are placed the database is updated

— Shrinking Phase: All locks are removed and no new ones are added

Deadlock

* When two transactions require a common set of
records.

 Both of them are in growing phase and each locks
some of the records

* None of the records are released and they wait for
each other to release the locked records

They will wait forever!!!

Breaking Deadlock

Facilities

* Programs can lock entire tables or an individual row

* Programs can release any or all of the locks they currently hold
* Programs can inquire whether a given row or table is locked

Rules
 |f morethan one row is required then the entire table must be locked

 Limit the amount of wait for a lock to be released beyond which a
transaction is aborted

« A well designed transaction should lock all the rows and tables before
starting the transaction

 Users should release locks as soon as possible to improve the
efficiency of the database

Security

* Protection against unauthorized access: either
intentional or accidental.

 Three main features for protection

— Passwords: Allows only authorized users to access the
database. Access privileges can be provided based on access

needs

— Encryption: Encodes data to non-decipherable. Data
decoded on demand to prevent hackers from accessing data

— Views: Different snapshot of the data ensures that users only
get access to data they need

Inteqgrity

* Integrity Constraints are the conditions that data must
satisfy during initial input & updates.

* There are four categories of constraints
— Data Type
— Legal Values
— Format

— Key Constraints
* Entity Integrity Constraints (Primary Key)
— Enforces the uniqueness of the primary key
 Referential Integrity Constraints (Foreign Key)

— Value of foreign key must match the value of primary key for some row in
another table

Integrity: Solutions

lgnore constraint
— Undesirable as it can lead to inconsistent data

Let user enforce the constraint

— Undesirable since user mistakes can be disastrous

Let programmer build the logic of constraints in the
programs

— Makes programs complex: harder to write, harder to
maintain, and expensive

Place burden on the DBMS.

— Preferred way: Cost of DBMS development amortized over
large user base, hence economical

Replication

Duplication of data at multiple physical locations

Each replica of the data can be changed
independently

Periodically the replicas update their data to the
master database — this process is called
synchronization

Disaster Planning: Backup & Recovery

Database can be damaged in a number of ways
— Power outage, disk crashes, floods, user errors

Periodic backups limit the loss due to sudden failures

Data can be recovered from the latest backup and the
changes since the backup need to be done in either of
two ways

— Manually

— From a catalog (if exists) recording all updates to the
database since the last backup.

Catalog/Data Dictionary

Contains information describing the database
— Schema for the database

— Characteristic for each field

— Possible values for each field

— Description of the data

— Relationships

— Description of the programs

Data Dictionary is same as catalog but may contain
wider set of information than catalog

